The STEELSEED project arises from the need to develop cross-cutting digital solutions based on explainable artificial intelligence (AI) for the improvement of energy efficiency, production quality and industrial maintenance in machining environments. The focus of the project is to advance the digitalization of the industry through a SaaS platform with monitoring, predictive analysis and decision support capabilities.
The consortium is composed of:
SYSTEM:
FAYMM:
DATISION:
The STEELSEED project has successfully achieved the technical objectives set out in the first milestone. It has been achieved:
These advances consolidate the technical basis for deploying a scalable and transferable solution to other industries.
Datos Procesados
Volumen de datos procesados por la solución en el proceso de entramiento y producción.
Mejora de EGP
Mejora de la eficiencia global productiva del proyecto. Métrica que impacta a la rentabilidad de planta.
Accuracy de los modelos.
La unidad de medida que empleamos para medir la precisión de nuestros modelos y soluciones.
The STEELSEED project arises from the need to develop cross-cutting digital solutions based on explainable artificial intelligence (AI) for the improvement of energy efficiency, production quality and industrial maintenance in machining environments. The focus of the project is to advance the digitalization of the industry through a SaaS platform with monitoring, predictive analysis and decision support capabilities.
The consortium is composed of:
SYSTEM:
FAYMM:
DATISION:
The STEELSEED project has successfully achieved the technical objectives set out in the first milestone. It has been achieved:
These advances consolidate the technical basis for deploying a scalable and transferable solution to other industries.
Datos Procesados
sit amet in order consectetur. Condimentum mi consequat eget.
Datos Procesados
sit amet in order consectetur. Condimentum mi consequat eget.
Datos Procesados
sit amet in order consectetur. Condimentum mi consequat eget.
Proyecto de detección de defectos en línea de fabricación de productos alimentarios por visión.
Predicción de futuras paradas no planificadas debidas roturas de maquinaria crítica industrial.
Modelado predictivo y optimización del rendimiento y eficiencia en función de condiciones operativas.